AIGC动态欢迎阅读
原标题:超越AF2?Iambic、英伟达、加州理工学院开发多尺度深度生成模型,进行状态特异性蛋白质-配体复合物结构预测
关键字:蛋白质,结构,复合物,模型,分子
文章来源:机器之心
内容字数:5565字
内容摘要:
将 ScienceAI设为星标
第一时间掌握
新鲜的 AI for Science 资讯编辑 | 萝卜皮
由蛋白质和小分子配体形成的结合复合物无处不在,对生命至关重要。虽然最近科学家在蛋白质结构预测方面取得了进展,但现有算法无法系统地预测结合配体结构及其对蛋白质折叠的调节作用。
为了解决这种差异,AI 制药公司 Iambic Therapeutics、英伟达(Nvidia Corporation)以及加州理工学院(California Institute of Technology)的研究人员提出了 NeuralPLexer,这是一种计算方法,可以仅使用蛋白质序列和配体分子图输入直接预测蛋白质-配体复合物结构。
NeuralPLexer 采用深度生成模型以原子分辨率对结合复合物的三维结构及其构象变化进行采样。该模型基于扩散过程,该过程结合了基本的生物物理约束和多尺度几何深度学习系统,以分层方式迭代采样残留级接触图和所有重原子坐标。
NeuralPLexer 预测与酶工程和药物发现中重要靶点的结构测定实验相一致,其在蛋白质组规模上加速功能蛋白和小分子设计方面拥有巨大潜力。
该研究以「St
原文链接:超越AF2?Iambic、英伟达、加州理工学院开发多尺度深度生成模型,进行状态特异性蛋白质-配体复合物结构预测
联系作者
文章来源:机器之心
作者微信:almosthuman2014
作者简介:专业的人工智能媒体和产业服务平台
© 版权声明
文章版权归作者所有,未经允许请勿转载。
相关文章
暂无评论...