33 分钟生成 12 万种碳捕捉候选材料,美国阿贡国家实验室发布生成式 AI 框架,加速 MOFs 创新
AIGC动态欢迎阅读
原标题:33 分钟生成 12 万种碳捕捉候选材料,美国阿贡国家实验室发布生成式 AI 框架,加速 MOFs 创新
关键字:结构,框架,研究人员,数据,模型
文章来源:HyperAI超神经
内容字数:7583字
内容摘要:
作者:十九
编辑:李宝珠,三羊
美国阿贡国家实验室发布生成式 AI 框架 GHP-MOFsassemble,能够随机生成并组装新的 MOFs 结构,筛选出高稳定性的 MOFs 结构,并测试其对二氧化碳的吸附能力。在工业化飞速发展的大环境下,地球正面临着一个严峻而急迫的问题一一过度的二氧化碳排放。二氧化碳就像是一层无形的厚茧裹住了人类赖以生存的家园,悄然改变着全球的气候,也带来了诸如极端天气频发、生态系统重创、农业生产受阻和公共卫生挑战等一系列连锁反应。
作为一种解决二氧化碳高排放的前沿手段,碳捕捉技术的创新与发展显得尤为重要,得到了更加广泛的关注。该技术是利用物理或化学方法,从大型排放源中提取二氧化碳,并对其进行处理,避免二氧化碳直接进入大气中,从而达到减排的目的。
近年来,一种名为金属有机框架 (Metal-Organic Frameworks,简称 MOFs) 的新型多孔晶体材料,因其独特的结构和性能引起了众多研究者的广泛关注。MOFs 由金属离子与有机配体通过配位键自组装而成,相较于传统的活性炭、分子筛等固体吸附剂,它们更环保、能耗更低,在二氧化碳吸附方面展现出更好的性能。
然而
原文链接:33 分钟生成 12 万种碳捕捉候选材料,美国阿贡国家实验室发布生成式 AI 框架,加速 MOFs 创新
联系作者
文章来源:HyperAI超神经
作者微信:HyperAI
作者简介:解构技术先进性与普适性,解读更前沿的 AIForScience 案例
© 版权声明
文章版权归作者所有,未经允许请勿转载。
相关文章
暂无评论...