AIGC动态欢迎阅读
内容摘要:
金磊 梦晨 发自 凹非寺量子位 | 公众号 QbitAI大模型的训练阶段我们选择GPU,但到了推理阶段,我们果断把CPU加到了菜单上。
量子位在近期与众多行业人士交流过程中发现,他们中有很多人纷纷开始传递出上述的这种观点。
无独有偶,Hugging Face在官方优化教程中,也有数篇文章剑指“如何用CPU高效推理大模型”:
而且细品教程内容后不难发现,这种用CPU加速推理的方法,所涵盖的不仅仅是大语言模型,更是涉猎到了图像、音频等形式的多模态大模型。
不仅如此,就连主流的框架和库,例如TensorFlow和PyTorch等,也一直在不断优化,提供针对CPU的优化、高效推理版本。
就这样,在GPU及其他专用加速芯片一统AI训练天下的时候,CPU在推理,包括大模型推理这件事上似乎辟出了一条“蹊径”,而且与之相关的讨论热度居然也逐渐高了起来。
至于为什么会出现这样的情况,与大模型的发展趋势可谓是紧密相关。
自从ChatGPT问世引爆了AIGC,国内外玩家先是以训练为主,呈现出一片好不热闹的百模大战;然而当训练阶段完毕,各大模型便纷纷踏至应用阶段。
就连英伟达在公布的最新季度财报中也表示,18
原文链接:拿CPU搞AI推理,谁给你的底气?
联系作者
文章来源:量子位
作者微信:QbitAI
作者简介:追踪人工智能新趋势,关注科技行业新突破
© 版权声明
文章版权归作者所有,未经允许请勿转载。
相关文章
暂无评论...