AIGC动态欢迎阅读
原标题:可控核聚变新里程碑,AI首次实现双托卡马克3D场全自动优化,登Nature子刊
关键字:聚变,等离子体,抑制,图示,性能
文章来源:人工智能学家
内容字数:7035字
内容摘要:
将 ScienceAI设为星标
第一时间掌握
新鲜的 AI for Science 资讯编辑 |X
几十年来,核聚变释放能量的「精妙」过程一直吸引着科学家们的研究兴趣。
现在,在普林斯顿等离子体物理实验室(PPPL)中 ,科学家正借助人工智能,来解决人类面临的紧迫挑战:通过聚变等离子体产生清洁、可靠的能源。
与传统的计算机代码不同,机器学习不仅仅是指令列表,它可以分析数据、推断特征之间的关系、从新知识中学习并适应。
PPPL 研究人员相信,这种学习和适应能力可以通过多种方式改善他们对聚变反应的控制。这包括完善超热等离子体周围容器的设计、优化加热方法以及在越来越长的时间内保持反应的稳定控制。
近日,PPPL 的 AI 研究取得重大成果。PPPL 研究人员解释了他们如何使用机器学习来避免磁扰动破坏聚变等离子体的稳定性。
图示:上面显示的两个托卡马克(DIII-D 和 KSTAR)装置中部署了用于检测和消除等离子体不稳定性的机器学习代码。(来源:通用原子公司和韩国聚变能源研究所)
该论文的主要作者、PPPL 研究物理学家 SangKyeun Kim 表示:「研究结果令人印象深刻,因为我们能够
原文链接:可控核聚变新里程碑,AI首次实现双托卡马克3D场全自动优化,登Nature子刊
联系作者
文章来源:人工智能学家
作者微信:AItists
作者简介:致力成为权威的人工智能科技媒体和前沿科技研究机构
© 版权声明
文章版权归作者所有,未经允许请勿转载。
相关文章
暂无评论...