NeurIPS 2024 | 如何防御对抗性提示攻击?AdvUnlearn让图片生成风险骤降

NeurIPS 2024 | 如何防御对抗性提示攻击?AdvUnlearn让图片生成风险骤降

AIGC动态欢迎阅读

原标题:NeurIPS 2024 | 如何防御对抗性提示攻击?AdvUnlearn让图片生成风险骤降
关键字:模型,提示,概念,对抗性,图像
文章来源:机器之心
内容字数:0字

内容摘要:


AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com本文第一作者为密歇根州立大学计算机系博士生张益萌,为 OPTML 实验室成员,指导教师为刘思佳助理教授。OPtimization and Trustworthy Machine Learning (OPTML) 实验室的研究兴趣涵盖机器学习 / 深度学习、优化、计算机视觉、安全、信号处理和数据科学领域,重点是开发学习算法和理论,以及鲁棒且可解释的人工智能。
扩散模型(Diffusion Models, DMs)已经成为文本到图像生成领域的核心技术之一。凭借其卓越的性能,这些模型可以生成高质量的图像,广泛应用于各类创作场景,如艺术设计、广告生成等。然而,随着扩散模型的日益普及,其带来的安全问题也逐渐显现。模型在处理开放式互联网数据时,可能会在生成过程中输出有害的


原文链接:NeurIPS 2024 | 如何防御对抗性提示攻击?AdvUnlearn让图片生成风险骤降

联系作者

文章来源:机器之心
作者微信:
作者简介:

阅读原文
© 版权声明

相关文章

暂无评论

暂无评论...