率先解决多类数据同时受损,中科大MIRA团队TRACER入选NeurIPS 2024:强鲁棒性的离线变分贝叶斯强化学习

率先解决多类数据同时受损,中科大MIRA团队TRACER入选NeurIPS 2024:强鲁棒性的离线变分贝叶斯强化学习

AIGC动态欢迎阅读

原标题:率先解决多类数据同时受损,中科大MIRA团队TRACER入选NeurIPS 2024:强鲁棒性的离线变分贝叶斯强化学习
关键字:数据,离线,不确定性,元素,动作
文章来源:机器之心
内容字数:0字

内容摘要:


AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com本论文作者杨睿是中国科学技术大学 2019 级硕博连读生,师从王杰教授、李斌教授,主要研究方向为强化学习、自动驾驶等。他曾以第一作者在 NeurIPS、KDD 等顶级期刊与会议上发表论文两篇,曾获滴滴精英实习生(16/1000+)。
近日,中科大王杰教授团队 (MIRA Lab) 针对离线强化学习数据集存在多类数据损坏这一复杂的实际问题,提出了一种鲁棒的变分贝叶斯推断方法,有效地提升了智能决策模型的鲁棒性,为机器人控制、自动驾驶等领域的鲁棒学习奠定了重要基础。论文发表在 CCF-A 类人工智能顶级会议 Neural Information Processing Systems(NeurIPS 2024)。论文地址:https://arxiv.org/abs/2


原文链接:率先解决多类数据同时受损,中科大MIRA团队TRACER入选NeurIPS 2024:强鲁棒性的离线变分贝叶斯强化学习

联系作者

文章来源:机器之心
作者微信:
作者简介:

阅读原文
© 版权声明

相关文章

暂无评论

暂无评论...