DraGan官网
拖动你的GAN:在生成图像歧管…
网站服务:Free。
Synthesizing visual content that meets users’ needs often requires flexible and precise controllability of the pose, shape, expression, and layout of the generated objects. Existing approaches gain controllability of generative adversarial networks (GANs) via manually annotated training data or a prior 3D model, which often lack flexibility, precision, and generality. In this work, we study a powerful yet much less explored way of controlling GANs, that is, to
拖动你的GAN:在生成图像歧管上的交互式基于点的操作
DraGan网址入口
https://vcai.mpi-inf.mpg.de/projects/DragGAN/
OpenI小编发现DraGan网站非常受用户欢迎,请访问DraGan网址入口试用。
数据统计
数据评估
关于DraGan特别声明
本站OpenI提供的DraGan都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由OpenI实际控制,在2023年 9月 9日 上午9:07收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,OpenI不承担任何责任。
相关导航
暂无评论...