SPECTER 2.0
SPECTER 2.0 is the successor to SPECTER and is capable of generating task specific embeddings for scientific tasks when paired with adapters.
Given the combination of title and abstract of a scientific paper or a short texual query, the model can be used to generate effective embeddings to be used in downstream applications.
Model Details
Model Description
SPECTER 2.0 has been trained on over 6M triplets of scientific paper citations, which are available here.
Post that it is trained on all the SciRepEval training tasks, with task format specific adapters.
Task Formats trained on:
- Classification
- Regression
- Proximity
- Adhoc Search
It builds on the work done in SciRepEval: A Multi-Format Benchmark for Scientific Document Representations and we evaluate the trained model on this benchmark as well.
- Developed by: Amanpreet Singh, Mike D’Arcy, Arman Cohan, Doug Downey, Sergey Feldman
- Shared by : Allen AI
- Model type: bert-base-uncased + adapters
- License: Apache 2.0
- Finetuned from model: allenai/scibert.
Model Sources
- Repository: https://github.com/allenai/SPECTER2_0
- Paper: https://api.semanticscholar.org/CorpusID:254018137
- Demo: Usage
Uses
Direct Use
Model | Type | Name and HF link |
---|---|---|
Base | Transformer | allenai/specter2 |
Classification | Adapter | allenai/specter2_classification |
Regression | Adapter | allenai/specter2_regression |
Retrieval | Adapter | allenai/specter2_proximity |
Adhoc Query | Adapter | allenai/specter2_adhoc_query |
数据统计
数据评估
本站OpenI提供的allenai/specter2都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由OpenI实际控制,在2023年 5月 26日 下午5:56收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,OpenI不承担任何责任。