Emotion English DistilRoBERTa-base
Description ℹ
With this model, you can classify emotions in English text data. The model was trained on 6 diverse datasets (see Appendix below) and predicts Ekman’s 6 basic emotions, plus a neutral class:
- anger 🤬
- disgust 🤢
- fear 😨
- joy 😀
- neutral 😐
- sadness 😭
- surprise 😲
The model is a fine-tuned checkpoint of DistilRoBERTa-base. For a ‘non-distilled’ emotion model, please refer to the model card of the RoBERTa-large version.
Application 🚀
a) Run emotion model with 3 lines of code on single text example using Hugging Face’s pipeline command on Google Colab:
from transformers import pipeline
classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True)
classifier("I love this!")
Output:
[[{'label': 'anger', 'score': 0.004419783595949411},
{'label': 'disgust', 'score': 0.0016119900392368436},
{'label': 'fear', 'score': 0.0004138521908316761},
{'label': 'joy', 'score': 0.9771687984466553},
{'label': 'neutral', 'score': 0.005764586851000786},
{'label': 'sadness', 'score': 0.002092392183840275},
{'label': 'surprise', 'score': 0.008528684265911579}]]
b) Run emotion model on multiple examples and full datasets (e.g., .csv files) on Google Colab:
Contact 💻
Please reach out to jochen.hartmann@tum.de if you have any questions or feedback.
Thanks to Samuel Domdey and chrsiebert for their support in making this model available.
Reference ✅
For attribution, please cite the following reference if you use this model. A working paper will be available soon.
Jochen Hartmann, "Emotion English DistilRoBERTa-base". https://huggingface.co/j-hartmann/emotion-english-distilroberta-base/, 2022.
BibTex citation:
@misc{hartmann2022emotionenglish,
author={Hartmann, Jochen},
title={Emotion English DistilRoBERTa-base},
year={2022},
howpublished = {\url{https://huggingface.co/j-hartmann/emotion-english-distilroberta-base/}},
}
Appendix 📚
Please find an overview of the datasets used for training below. All datasets contain English text. The table summarizes which emotions are available in each of the datasets. The datasets represent a diverse collection of text types. Specifically, they contain emotion labels for texts from Twitter, Reddit, student self-reports, and utterances from TV dialogues. As MELD (Multimodal EmotionLines Dataset) extends the popular EmotionLines dataset, EmotionLines itself is not included here.
Name | anger | disgust | fear | joy | neutral | sadness | surprise |
---|---|---|---|---|---|---|---|
Crowdflower (2016) | Yes | – | – | Yes | Yes | Yes | Yes |
Emotion Dataset, Elvis et al. (2018) | Yes | – | Yes | Yes | – | Yes | Yes |
GoEmotions, Demszky et al. (2020) | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
ISEAR, Vikash (2018) | Yes | Yes | Yes | Yes | – | Yes | – |
MELD, Poria et al. (2019) | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
SemEval-2018, EI-reg, Mohammad et al. (2018) | Yes | – | Yes | Yes | – | Yes | – |
数据统计
数据评估
本站OpenI提供的j-hartmann/emotion-english-distilroberta-base都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由OpenI实际控制,在2023年 5月 26日 下午6:05收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,OpenI不承担任何责任。