facebook/unit_hifigan_mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj_dur
中国
HF音频

facebook/unit_hifigan_mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj_dur


unit_hifigan_mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj_dur

Speech-to-speech translation model from fairseq S2UT (paper/code):

  • Spanish-English
  • Trained on mTEDx, CoVoST 2, Europarl-ST and VoxPopuli


Usage

import json
import os
from pathlib import Path
import IPython.display as ipd
from fairseq import hub_utils
from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
from fairseq.models.speech_to_text.hub_interface import S2THubInterface
from fairseq.models.text_to_speech import CodeHiFiGANVocoder
from fairseq.models.text_to_speech.hub_interface import VocoderHubInterface
from huggingface_hub import snapshot_download
import torchaudio
cache_dir = os.getenv("HUGGINGFACE_HUB_CACHE")
#models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
# "facebook/xm_transformer_s2ut_800m-es-en-st-asr-bt_h1_2022",
# arg_overrides={"config_yaml": "config.yaml", "task": "speech_to_text"},
# cache_dir=cache_dir,
# )
# model = models[0].cpu()
# cfg["task"].cpu = True
# generator = task.build_generator([model], cfg)
# # requires 16000Hz mono channel audio
# audio, _ = torchaudio.load("/Users/lpw/git/api-inference-community/docker_images/fairseq/tests/samples/sample2.flac")
# sample = S2THubInterface.get_model_input(task, audio)
# unit = S2THubInterface.get_prediction(task, model, generator, sample)
# speech synthesis
library_name = "fairseq"
cache_dir = (
cache_dir or (Path.home() / ".cache" / library_name).as_posix()
)
cache_dir = snapshot_download(
f"facebook/unit_hifigan_mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj_dur", cache_dir=cache_dir, library_name=library_name
)
x = hub_utils.from_pretrained(
cache_dir,
"model.pt",
".",
archive_map=CodeHiFiGANVocoder.hub_models(),
config_yaml="config.json",
fp16=False,
is_vocoder=True,
)
with open(f"{x['args']['data']}/config.json") as f:
vocoder_cfg = json.load(f)
assert (
len(x["args"]["model_path"]) == 1
), "Too many vocoder models in the input"
vocoder = CodeHiFiGANVocoder(x["args"]["model_path"][0], vocoder_cfg)
tts_model = VocoderHubInterface(vocoder_cfg, vocoder)
tts_sample = tts_model.get_model_input(unit)
wav, sr = tts_model.get_prediction(tts_sample)
ipd.Audio(wav, rate=sr)

数据统计

数据评估

facebook/unit_hifigan_mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj_dur浏览人数已经达到17,如你需要查询该站的相关权重信息,可以点击"5118数据""爱站数据""Chinaz数据"进入;以目前的网站数据参考,建议大家请以爱站数据为准,更多网站价值评估因素如:facebook/unit_hifigan_mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj_dur的访问速度、搜索引擎收录以及索引量、用户体验等;当然要评估一个站的价值,最主要还是需要根据您自身的需求以及需要,一些确切的数据则需要找facebook/unit_hifigan_mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj_dur的站长进行洽谈提供。如该站的IP、PV、跳出率等!

关于facebook/unit_hifigan_mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj_dur特别声明

本站OpenI提供的facebook/unit_hifigan_mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj_dur都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由OpenI实际控制,在2023年 5月 26日 下午6:12收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,OpenI不承担任何责任。

相关导航

暂无评论

暂无评论...