Model description

This model is built using two important architectural components proposed by Bryan Lim et al. in Temporal Fusion Transformers (TFT) for Interpretable Multi-horizon Time Series Forecasting called GRN and VSN which are very useful for structured data learning tasks.

  1. Gated Residual Networks(GRN): consists of skip connections and gating layers that facilitate information flow efficiently. They have the flexibility to apply non-linear processing only where needed.
    GRNs make use of Gated Linear Units (or GLUs) to suppress the input that are not relevant for a given task.
    The GRN works as follows:

    • It first applies Non-linear ELU tranformation on its inputs
    • It then applies a linear transformation followed by dropout
    • Next it applies GLU and adds the original inputs to the output of the GLU to perform skip (residual) connection
    • Finally, it applies layer normalization and produces its output
  2. Variable Selection Networks(VSN): help in carefully selecting the most important features from the input and getting rid of any unnecessary noisy inputs which could harm the model’s performance.
    The VSN works as follows:

    • First, it applies a Gated Residual Network (GRN) to each feature individually.
    • Then it concatenates all features and applies a GRN on the concatenated features, followed by a softmax to produce feature weights
    • It produces a weighted sum of the output of the individual GRN

Note: This model is not based on the whole TFT model described in the mentioned paper on top but only uses its GRN and VSN components demonstrating that GRN and VSNs can be very useful on their own also for structured data learning tasks.


Intended uses

This model can be used for binary classification task to determine whether a person makes over $500K a year or not.


Training and evaluation data

This model was trained using the United States Census Income Dataset provided by the UCI Machine Learning Repository.
The dataset consists of weighted census data containing demographic and employment related variables extracted from 1994 and 1995 Current Population Surveys conducted by the US Census Bureau.
The dataset comprises of ~299K samples with 41 input variables and 1 target variable called income_level
The variable instance_weight is not used as an input for the model so finally the model uses 40 input features containing 7 numerical features and 33 categorical features:

Numerical FeaturesCategorical Features
ageclass of worker
wage per hourindustry code
capital gainsoccupation code
capital lossesadjusted gross income
dividends from stockseducation
num persons worked for employerveterans benefits
weeks worked in yearenrolled in edu inst last wk
marital status
major industry code
major occupation code
mace
hispanic Origin
sex
member of a labor union
reason for unemployment
full or part time employment stat
federal income tax liability
tax filer status
region of previous residence
state of previous residence
detailed household and family stat
detailed household summary in household
migration code-change in msa
migration code-change in reg
migration code-move within reg
live in this house 1 year ago
migration prev res in sunbelt
family members under 18
total person earnings
country of birth father
country of birth mother
country of birth self
citizenship
total person income
own business or self employed
taxable income amount
fill inc questionnaire for veteran’s admin

数据统计

数据评估

keras-io/structured-data-classification-grn-vsn浏览人数已经达到17,如你需要查询该站的相关权重信息,可以点击"5118数据""爱站数据""Chinaz数据"进入;以目前的网站数据参考,建议大家请以爱站数据为准,更多网站价值评估因素如:keras-io/structured-data-classification-grn-vsn的访问速度、搜索引擎收录以及索引量、用户体验等;当然要评估一个站的价值,最主要还是需要根据您自身的需求以及需要,一些确切的数据则需要找keras-io/structured-data-classification-grn-vsn的站长进行洽谈提供。如该站的IP、PV、跳出率等!

关于keras-io/structured-data-classification-grn-vsn特别声明

本站OpenI提供的keras-io/structured-data-classification-grn-vsn都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由OpenI实际控制,在2023年 5月 26日 下午6:14收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,OpenI不承担任何责任。

相关导航

暂无评论

暂无评论...