Model Trained Using AutoTrain
- Problem type: Multi-class Classification
- Model ID: 9705273
- CO2 Emissions (in grams): 0.0006300767567816624
Validation Metrics
- Loss: 0.15987505325856152
- Accuracy: 0.9
- Macro F1: 0.899749373433584
- Micro F1: 0.9
- Weighted F1: 0.8997493734335841
- Macro Precision: 0.9023569023569024
- Micro Precision: 0.9
- Weighted Precision: 0.9023569023569025
- Macro Recall: 0.9
- Micro Recall: 0.9
- Weighted Recall: 0.9
Usage
import json
import joblib
import pandas as pd
model = joblib.load('model.joblib')
config = json.load(open('config.json'))
features = config['features']
# data = pd.read_csv("data.csv")
data = data[features]
data.columns = ["feat_" + str(col) for col in data.columns]
predictions = model.predict(data) # or model.predict_proba(data)
数据统计
数据评估
关于abhishek/autotrain-iris-logistic-regression特别声明
本站OpenI提供的abhishek/autotrain-iris-logistic-regression都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由OpenI实际控制,在2023年 5月 26日 下午6:14收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,OpenI不承担任何责任。
相关导航
暂无评论...