加速知识检索:伯克利&DeepMind联合研究,RaLMSpec让语言模型服务飞速提升2-7倍!

加速知识检索:伯克利&DeepMind联合研究,RaLMSpec让语言模型服务飞速提升2-7倍!

AIGC动态欢迎阅读

原标题:加速知识检索:伯克利&DeepMind联合研究,RaLMSpec让语言模型服务飞速提升2-7倍!
关键字:解读,步长,模型,步骤,缓存
文章来源:夕小瑶科技说
内容字数:8590字

内容摘要:


夕小瑶科技说 原创作者 | 智商掉了一地、卖萌酱近年来,随着大型语言模型(LLM)的出现,在多样化的 NLP 任务上取得了令人瞩目的成果。然而,知识密集型任务仍是 NLP 领域中的一项挑战,因为这些任务不仅要求模型要理解和生成自然语言,还要能够访问和利用大量的外部知识。然而,要想将大量知识编码进一个完全参数化的模型中,不仅在训练上需要更多努力,在部署时也同样如此。特别是当基础模型需要适应新数据或不同的下游任务时,这一挑战会更加严峻。
为了应对这一挑战,最近的研究提出了检索增强型语言模型(RaLM),通过增强检索将参数化的语言模型与非参数化的知识库结合起来,这种方法在低成本适应最新数据和更好的源归因机制方面表现出色。在各种 RaLM 方法中,由于在检索器和语言模型之间更频繁的交互,迭代 RaLM 提供了更好的生成质量。然而,迭代 RaLM 也会因为频繁的检索步骤而遇到高昂开销。
▲图1 (a)迭代式 RaLM 的工作流程 (b)RaLMSpec 框架 (c)RaLMSpec 在保持模型质量的同时实现了较低的延迟由此,本文提出了一种名为 RaLMSpec 的框架,它采用了推测性检索和批量验


原文链接:加速知识检索:伯克利&DeepMind联合研究,RaLMSpec让语言模型服务飞速提升2-7倍!

联系作者

文章来源:夕小瑶科技说
作者微信:xixiaoyaoQAQ
作者简介:更快的AI前沿,更深的行业洞见。聚集25万AI一线开发者、互联网中高管和机构投资人。一线作者来自清北、国内外顶级AI实验室和大厂,兼备行业嗅觉与报道深度。

阅读原文
© 版权声明

相关文章

暂无评论

暂无评论...