补齐Transformer规划短板,田渊栋团队的Searchformer火了

AIGC动态9个月前发布 机器之心
35 0 0

补齐Transformer规划短板,田渊栋团队的Searchformer火了

AIGC动态欢迎阅读

原标题:补齐Transformer规划短板,田渊栋团队的Searchformer火了
关键字:模型,任务,数据,方法,团队
文章来源:机器之心
内容字数:4794字

内容摘要:


机器之心报道
编辑:PandaTransformer 强大的泛化能力再次得到证明!最近几年,基于 Transformer 的架构在多种任务上都表现卓越,吸引了世界的瞩目。使用这类架构搭配大量数据,得到的大型语言模型(LLM)等模型可以很好地泛化用于真实世界用例。
尽管有如此成功,但基于 Transformer 的架构和 LLM 依然难以处理规划和推理任务。之前已有研究证明 LLM 难以应对多步规划任务或高阶推理任务。
为了提升 Transformer 的推理和规划性能,近些年研究社区也提出了一些方法。一种最常见且有效的方法是模拟人类的思考过程:先生成中间「思维」,然后再输出响应。比如思维链(CoT)提示法就是鼓励模型预测中间步骤,进行按步骤的「思考」。思维树(ToT)则使用了分支策略和评判方法,让模型生成多个不同的思维路径,然后从中选出最佳路径。尽管这些技术通常是有效的,但也有研究表明,在很多案例中,这些方法会让模型的性能下降,原因包括自我强制(self-enforcing)。
另一方面,在一个数据集上有效的技术可能无法很好地处理其它数据集,原因可能包括所涉及的推理类型发生了变化,比如


原文链接:补齐Transformer规划短板,田渊栋团队的Searchformer火了

联系作者

文章来源:机器之心
作者微信:almosthuman2014
作者简介:专业的人工智能媒体和产业服务平台

阅读原文
© 版权声明

相关文章

暂无评论

暂无评论...