AIGC动态欢迎阅读
原标题:大模型放进推荐系统怎么玩?微软亚研全面总结
关键字:用户,模型,项目,工具,解读
文章来源:夕小瑶科技说
内容字数:9726字
内容摘要:
夕小瑶科技说 原创作者 | 谢年年
在大模型+时代,似乎任何自然语言处理任务在大模型加持下都完成了一轮升级改造,展现出前所未有的高效与效果。语义理解、情感分析还是文本生成这些常规任务自然是不必说,但也有一些任务比如推荐,简单粗暴的训练LLMs的思路并非明智之举。
推荐系统作为一种专门类型的信息检索系统,旨在从用户的个人资料和行为历史中捕捉偏好。
一方面,LLMs的知识边界仅限于它们最后一次训练更新时可用的信息。特定项目目录以及特定推荐环境中项目的属性可能无法完全被LLMs捕捉。
另一方面,用户偏好模式不仅是领域特定的,而且还受到快速演变的影响。因此,传统的推荐模型需要频繁重新训练或微调以捕捉与LLMs中编码的一般世界知识不同的独特和变化模式,代价高昂。
微软亚研团队就以上的局限探讨了利用LLMs推进推荐系统的可能性。今天这篇论文并不是介绍某一方面的改进,而是将近期团队中发布的关于推荐系统的工作打包进行系统性的介绍,包括推荐AI agent,面向推荐的语言模型,推荐知识插件,推荐模型的可解释性,自动评估器几大方面,并推出一个轻量级工具包——RecAI,从全面和多样化的角度将LLMs整合到
联系作者
文章来源:夕小瑶科技说
作者微信:xixiaoyaoQAQ
作者简介:专业、有趣、深度价值导向的科技媒体。聚集30万AI工程师、研究员,覆盖500多家海内外机构投资人,互联网大厂中高管和AI公司创始人。一线作者来自清北、国内外顶级AI实验室和大厂,兼备敏锐的行业嗅觉和洞察深度。商务合作:zym5189
© 版权声明
文章版权归作者所有,未经允许请勿转载。
相关文章
暂无评论...