AIGC动态欢迎阅读
原标题:对话南洋理工大学安波教授:如何让大语言模型适应动态环境?
关键字:模型,环境,语言,动作,人类
文章来源:大数据文摘
内容字数:0字
内容摘要:
大数据文摘受权转载自AI科技评论
作者丨陈鹭伊
编辑丨岑峰
对人类越是简单的问题,大语言模型反而越难以做好?
尽管现在的大模型已经有能力冲击数学竞赛级别的题目,但在像“9.11和9.9谁大”这样的简单问题上仍然会翻船。而从推特上网友对问题的讨论中猜测,出现这种错误的原因可能是由于大模型以token的方式来理解文字,当9.11被拆成“9”、“.”和“11”三部分时,11确实比9大。大语言模型(LLMs)在处理复杂问题时表现出色,但在一些看似简单的问题上却可能遇到困难——这种现象并不是因为模型本身的复杂性,而是由于模型与特定环境或任务之间的知识不对齐。此外,LLMs在生成文本时依赖于预测下一个单词的概率,这种机制可能导致它们生成与人类常识不符的结果。这是因为现有的模型通常侧重于语言的统计特性,而不是深入理解人类的价值观和偏好。
随着大语言模型的能力不断增强,人们对其可能带来的伦理风险和对人类的潜在威胁的担忧也在增加。LLMs可能会传播其训练数据中的有害信息,如偏见、歧视和有害内容。它们还可能泄露训练数据中的私密和敏感信息,或生成误导性或虚假信息。随着这些Agent越来越多地融入我们的日常生
原文链接:对话南洋理工大学安波教授:如何让大语言模型适应动态环境?
联系作者
文章来源:大数据文摘
作者微信:
作者简介:
© 版权声明
文章版权归作者所有,未经允许请勿转载。
相关文章
暂无评论...