AIGC动态欢迎阅读
原标题:NeurIPS 2024 | Transformer长度外推,全新位置编码DAPE大幅提升模型性能
关键字:位置,长度,模型,注意力,语义
文章来源:机器之心
内容字数:0字
内容摘要:
AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com本篇论文已被NeurIPS 2024接收,论文第一作者郑传阳来自香港中文大学,共同作者包括新加波国立大学高伊杭,诺亚实验室石涵、任晓哲、蒋欣、李震国,香港中文大学 黄敏斌、 李靖瑶,香港大学熊璟,香港浸会大学吴国宝,香港中文大学李煜
在当今的人工智能领域,Transformer 模型已成为解决诸多自然语言处理任务的核心。然而,Transformer 模型在处理长文本时常常遇到性能瓶颈。传统的位置编码方法,如绝对位置编码(APE)和相对位置编码(RPE),虽然在许多任务中表现良好,但其固定性限制了其在处理超长文本时的适应性和灵活性。
为了应对这一挑战,提出了一种全新的位置编码方法:Data-Adaptive Positional Encoding(DAPE)。D
原文链接:NeurIPS 2024 | Transformer长度外推,全新位置编码DAPE大幅提升模型性能
联系作者
文章来源:机器之心
作者微信:
作者简介:
© 版权声明
文章版权归作者所有,未经允许请勿转载。
相关文章
暂无评论...