AIGC动态欢迎阅读
原标题:幻觉不一定有害,新框架用AI的「幻觉」优化图像分割技术
关键字:任务,提示,图像,样本,幻觉
文章来源:机器之心
内容字数:0字
内容摘要:
AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com作者胡健,是伦敦大学玛丽女王学院的博士生,导师是龚少刚教授,这篇文章是在龚少刚教授和严骏驰教授的指导下完成的。
在人工智能领域,大型预训练模型(如 GPT 和 LLaVA)的 “幻觉” 现象常被视为一个难以克服的挑战,尤其是在执行精确任务如图像分割时。然而,最新发表于 NeurIPS 2024 的研究《Leveraging Hallucinations to Reduce Manual Prompt Dependency in Promptable Segmentation》提出了一个有趣的观点:这些幻觉实际上可以被转化为有用的信息源,从而减少对手动提示的依赖。文章链接:https://arxiv.org/abs/2408.15205
代码链接:https:/
原文链接:幻觉不一定有害,新框架用AI的「幻觉」优化图像分割技术
联系作者
文章来源:机器之心
作者微信:
作者简介:
© 版权声明
文章版权归作者所有,未经允许请勿转载。
相关文章
暂无评论...