LeCun赞转!类Sora模型能否理解物理规律?字节豆包大模型团队系统性研究揭秘

LeCun赞转!类Sora模型能否理解物理规律?字节豆包大模型团队系统性研究揭秘

AIGC动态欢迎阅读

原标题:LeCun赞转!类Sora模型能否理解物理规律?字节豆包大模型团队系统性研究揭秘
关键字:模型,视频,物理,数据,团队
文章来源:机器之心
内容字数:0字

内容摘要:


机器之心发布
机器之心编辑部视频生成模型虽然可以生成一些看似符合常识的视频,但被证实目前还无法理解物理规律!
自从 Sora 横空出世,业界便掀起了一场「视频生成模型到底懂不懂物理规律」的争论。图灵奖得主 Yann LeCun 明确表示,基于文本提示生成的逼真视频并不代表模型真正理解了物理世界。之后更是直言,像 Sora 这样通过生成像素来建模世界的方式注定要失败。Keras 之父 François Chollet 则认为,Sora 这样的视频生成模型确实嵌入了「物理模型」,但问题是:这个物理模型是否准确?它能否泛化到新的情况,即那些不仅仅是训练数据插值的情形?这些问题至关重要,决定了生成图像的应用范围 —— 是仅限于媒体生产,还是可以用作现实世界的可靠模拟。最后他指出,不能简单地通过拟合大量数据来期望得到一个能够泛化到现实世界所有可能情况的模型。此后,关于视频生成模型到底有没有在学习、理解物理规律,业界始终没有一个定论。直到近日,字节豆包大模型团队公布的一项系统性研究,为两者之间的关系「划上了不等号」。
该团队通过大规模实验发现 —— 即便依照 Scaling Law 扩大模型参数与


原文链接:LeCun赞转!类Sora模型能否理解物理规律?字节豆包大模型团队系统性研究揭秘

联系作者

文章来源:机器之心
作者微信:
作者简介:

阅读原文
© 版权声明

相关文章

暂无评论

暂无评论...