SEW-D-tiny

SEW-D by ASAPP Research
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc…
Paper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition
Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi
Abstract
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
The original model can be found under https://github.com/asappresearch/sew#model-checkpoints .


Usage

See this blog for more information on how to fine-tune the model. Note that the class Wav2Vec2ForCTC has to be replaced by SEWDForCTC.

数据统计

数据评估

asapp/sew-d-tiny-100k浏览人数已经达到28,如你需要查询该站的相关权重信息,可以点击"5118数据""爱站数据""Chinaz数据"进入;以目前的网站数据参考,建议大家请以爱站数据为准,更多网站价值评估因素如:asapp/sew-d-tiny-100k的访问速度、搜索引擎收录以及索引量、用户体验等;当然要评估一个站的价值,最主要还是需要根据您自身的需求以及需要,一些确切的数据则需要找asapp/sew-d-tiny-100k的站长进行洽谈提供。如该站的IP、PV、跳出率等!

关于asapp/sew-d-tiny-100k特别声明

本站OpenI提供的asapp/sew-d-tiny-100k都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由OpenI实际控制,在2023年 5月 26日 下午6:01收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,OpenI不承担任何责任。

相关导航

暂无评论

暂无评论...