Model Trained Using AutoNLP

  • Problem type: Multi-class Classification
  • Model ID: 492513457
  • CO2 Emissions (in grams): 5.527544460835904


Validation Metrics

  • Loss: 0.07609463483095169
  • Accuracy: 0.9735624586913417
  • Macro F1: 0.9736173135739408
  • Micro F1: 0.9735624586913417
  • Weighted F1: 0.9736173135739408
  • Macro Precision: 0.9737771415197378
  • Micro Precision: 0.9735624586913417
  • Weighted Precision: 0.9737771415197378
  • Macro Recall: 0.9735624586913417
  • Micro Recall: 0.9735624586913417
  • Weighted Recall: 0.9735624586913417


Usage

You can use cURL to access this model:
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/madhurjindal/autonlp-Gibberish-Detector-492513457

Or Python API:
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("madhurjindal/autonlp-Gibberish-Detector-492513457", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("madhurjindal/autonlp-Gibberish-Detector-492513457", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)

数据统计

数据评估

madhurjindal/autonlp-Gibberish-Detector-492513457浏览人数已经达到17,如你需要查询该站的相关权重信息,可以点击"5118数据""爱站数据""Chinaz数据"进入;以目前的网站数据参考,建议大家请以爱站数据为准,更多网站价值评估因素如:madhurjindal/autonlp-Gibberish-Detector-492513457的访问速度、搜索引擎收录以及索引量、用户体验等;当然要评估一个站的价值,最主要还是需要根据您自身的需求以及需要,一些确切的数据则需要找madhurjindal/autonlp-Gibberish-Detector-492513457的站长进行洽谈提供。如该站的IP、PV、跳出率等!

关于madhurjindal/autonlp-Gibberish-Detector-492513457特别声明

本站OpenI提供的madhurjindal/autonlp-Gibberish-Detector-492513457都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由OpenI实际控制,在2023年 5月 26日 下午6:04收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,OpenI不承担任何责任。

相关导航

暂无评论

暂无评论...