告别逐一标注,一个提示实现批量图片分割,高效又准确

AIGC动态1年前 (2024)发布 机器之心
10 0 0

告别逐一标注,一个提示实现批量图片分割,高效又准确

AIGC动态欢迎阅读

原标题:告别逐一标注,一个提示实现批量图片分割,高效又准确
关键字:提示,任务,作者,样本,物体
文章来源:机器之心
内容字数:6263字

内容摘要:


机器之心专栏
机器之心编辑部仅需一个任务描述,即可一键分割所有图片!
Segment Anything Model (SAM) 的提出在图像分割领域引起了巨大的关注,其卓越的泛化性能引发了广泛的兴趣。然而,尽管如此,SAM 仍然面临一个无法回避的问题:为了使 SAM 能够准确地分割出目标物体的位置,每张图片都需要手动提供一个独特的视觉提示。如下图所示,即使点击的是同一物体(图 (b)-(d)),微小位置变化都会导致分割结果的显著差异。这是因为视觉提示缺乏语义信息,即使提示在想要分割的目标物体上,仍然可能引发歧义。框提示和涂鸦提示(图 (e)(f))虽然提供了更具体的位置信息,但由于机器和人类对目标分割物的理解存在偏差,效果常常与期望有所出入。目前的一些方法,如 SEEM 和 AV-SAM,通过提供更多模态的输入信息来引导模型更好地理解要分割的物体是什么。然而,尽管输入信息变得更加具体和多样化,但在实际场景中,每个无标注样本仍然需要一个独特的提示来作为指导,这是一种不切实际的需求。理想情况下,作者希望告知机器当前的无标注数据都是采集自于什么任务,然后期望机器能够批量地按照作者的要求对这些


原文链接:告别逐一标注,一个提示实现批量图片分割,高效又准确

联系作者

文章来源:机器之心
作者微信:almosthuman2014
作者简介:专业的人工智能媒体和产业服务平台

阅读原文
© 版权声明

相关文章

暂无评论

暂无评论...
第五届
全国人工智能大赛

总奖金超 233 万!

报名即将截止