Releasing Hindi ELECTRA model

This is a first attempt at a Hindi language model trained with Google Research’s ELECTRA.
As of 2022 I recommend Google’s MuRIL model trained on English, Hindi, and other major Indian languages, both in their script and latinized script: https://huggingface.co/google/muril-base-cased and https://huggingface.co/google/muril-large-cased
For causal language models, I would suggest https://huggingface.co/sberbank-ai/mGPT, though this is a large model
Tokenization and training CoLab
I originally used a modified ELECTRA for finetuning, but now use SimpleTransformers.
Blog post – I was greatly influenced by: https://huggingface.co/blog/how-to-train


Example Notebooks

This small model has comparable results to Multilingual BERT on BBC Hindi news classification
and on Hindi movie reviews / sentiment analysis (using SimpleTransformers)
You can get higher accuracy using ktrain by adjusting learning rate (also: changing model_type in config.json – this is an open issue with ktrain): https://colab.research.google.com/drive/1mSeeSfVSOT7e-dVhPlmSsQRvpn6xC05w?usp=sharing
Question-answering on MLQA dataset: https://colab.research.google.com/drive/1i6fidh2tItf_-IDkljMuaIGmEU6HT2Ar#scrollTo=IcFoAHgKCUiQ
A larger model (Hindi-TPU-Electra) using ELECTRA base size outperforms both models on Hindi movie reviews / sentiment analysis, but
does not perform as well on the BBC news classification task.


Corpus

Download: https://drive.google.com/drive/folders/1SXzisKq33wuqrwbfp428xeu_hDxXVUUu?usp=sharing
The corpus is two files:

  • Hindi CommonCrawl deduped by OSCAR https://traces1.inria.fr/oscar/
  • latest Hindi Wikipedia ( https://dumps.wikimedia.org/hiwiki/ ) + WikiExtractor to txt

Bonus notes:

  • Adding English wiki text or parallel corpus could help with cross-lingual tasks and training


Vocabulary

https://drive.google.com/file/d/1-6tXrii3tVxjkbrpSJE9MOG_HhbvP66V/view?usp=sharing
Bonus notes:

  • Created with HuggingFace Tokenizers; you can increase vocabulary size and re-train; remember to change ELECTRA vocab_size


Training

Structure your files, with data-dir named “trainer” here
trainer
- vocab.txt
- pretrain_tfrecords
-- (all .tfrecord... files)
- models
-- modelname
--- checkpoint
--- graph.pbtxt
--- model.*

CoLab notebook gives examples of GPU vs. TPU setup
configure_pretraining.py


Conversion

Use this process to convert an in-progress or completed ELECTRA checkpoint to a Transformers-ready model:
git clone https://github.com/huggingface/transformers
python ./transformers/src/transformers/convert_electra_original_tf_checkpoint_to_pytorch.py
--tf_checkpoint_path=./models/checkpointdir
--config_file=config.json
--pytorch_dump_path=pytorch_model.bin
--discriminator_or_generator=discriminator
python

from transformers import TFElectraForPreTraining
model = TFElectraForPreTraining.from_pretrained("./dir_with_pytorch", from_pt=True)
model.save_pretrained("tf")

Once you have formed one directory with config.json, pytorch_model.bin, tf_model.h5, special_tokens_map.json, tokenizer_config.json, and vocab.txt on the same level, run:
transformers-cli upload directory

数据统计

数据评估

monsoon-nlp/hindi-bert浏览人数已经达到31,如你需要查询该站的相关权重信息,可以点击"5118数据""爱站数据""Chinaz数据"进入;以目前的网站数据参考,建议大家请以爱站数据为准,更多网站价值评估因素如:monsoon-nlp/hindi-bert的访问速度、搜索引擎收录以及索引量、用户体验等;当然要评估一个站的价值,最主要还是需要根据您自身的需求以及需要,一些确切的数据则需要找monsoon-nlp/hindi-bert的站长进行洽谈提供。如该站的IP、PV、跳出率等!

关于monsoon-nlp/hindi-bert特别声明

本站OpenI提供的monsoon-nlp/hindi-bert都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由OpenI实际控制,在2023年 5月 26日 下午5:54收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,OpenI不承担任何责任。

相关导航

暂无评论

暂无评论...