DeBERTa: Decoding-enhanced BERT with Disentangled Attention
DeBERTa improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data.
Please check the official repository for more details and updates.
This is the DeBERTa large model fine-tuned with MNLI task.
Fine-tuning on NLU tasks
We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks.
Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m/mm | SST-2 | QNLI | CoLA | RTE | MRPC | QQP | STS-B |
---|---|---|---|---|---|---|---|---|---|---|
F1/EM | F1/EM | Acc | Acc | Acc | MCC | Acc | Acc/F1 | Acc/F1 | P/S | |
BERT-Large | 90.9/84.1 | 81.8/79.0 | 86.6/- | 93.2 | 92.3 | 60.6 | 70.4 | 88.0/- | 91.3/- | 90.0/- |
RoBERTa-Large | 94.6/88.9 | 89.4/86.5 | 90.2/- | 96.4 | 93.9 | 68.0 | 86.6 | 90.9/- | 92.2/- | 92.4/- |
XLNet-Large | 95.1/89.7 | 90.6/87.9 | 90.8/- | 97.0 | 94.9 | 69.0 | 85.9 | 90.8/- | 92.3/- | 92.5/- |
DeBERTa-Large1 | 95.5/90.1 | 90.7/88.0 | 91.3/91.1 | 96.5 | 95.3 | 69.5 | 91.0 | 92.6/94.6 | 92.3/- | 92.8/92.5 |
DeBERTa-XLarge1 | -/- | -/- | 91.5/91.2 | 97.0 | – | – | 93.1 | 92.1/94.3 | – | 92.9/92.7 |
DeBERTa-V2-XLarge1 | 95.8/90.8 | 91.4/88.9 | 91.7/91.6 | 97.5 | 95.8 | 71.1 | 93.9 | 92.0/94.2 | 92.3/89.8 | 92.9/92.9 |
DeBERTa-V2-XXLarge1,2 | 96.1/91.4 | 92.2/89.7 | 91.7/91.9 | 97.2 | 96.0 | 72.0 | 93.5 | 93.1/94.9 | 92.7/90.3 | 93.2/93.1 |
数据统计
数据评估
关于microsoft/deberta-large-mnli特别声明
本站OpenI提供的microsoft/deberta-large-mnli都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由OpenI实际控制,在2023年 5月 26日 下午6:04收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,OpenI不承担任何责任。
相关导航
暂无评论...