AIGC动态欢迎阅读
原标题:多主体智能综述:社会互动启发的人工智能进化
关键字:主体,数据,社会,行为,人工智能
文章来源:人工智能学家
内容字数:23298字
内容摘要:
导语传统的人工智能与复杂系统建模研究主要集中在单一主体的学习和优化上,但这种方法在处理复杂、动态和不确定的环境时面临着局限性。在自然界中,智能行为往往是通过多个互动主体的集体行为和协作来实现的。尤其是作为集体的人类智能,具备通过社会互动与学习持续创新的能力。因此研究人工智能如何通过社会学习和文化演化来模仿这种人类智能的特性,成为重要研究课题。近期发表在Nature Machine Intelligence杂志的一篇综述文章,探讨了如何通过社会学习、生物进化和文化演化的途径来实现类人的人工智能。论文主张,通过模拟人类社会和文化中的多层次互动,可以促进人工智能系统持续的复合创新。新一代的人工智能系统,将通过智能主体的数据生成、智能主体之间的博弈互动,超越人类数据的限制。
研究领域:人工智能,复杂系统建模,多主体智能,社会学习,自然演化来源:集智俱乐部
作者:Edgar A. Duéñez-Guzmán, Suzanne Sadedin, Jane X. Wang等
译者:刘培源论文题目:
A social path to human-like artificial intelligence
联系作者
文章来源:人工智能学家
作者微信:AItists
作者简介:致力成为权威的人工智能科技媒体和前沿科技研究机构
© 版权声明
文章版权归作者所有,未经允许请勿转载。
相关文章
暂无评论...