仅需200M参数,零样本性能超越有监督!谷歌发布时序预测基础模型TimesFM

AIGC动态9个月前发布 新智元
15 0 0

仅需200M参数,零样本性能超越有监督!谷歌发布时序预测基础模型TimesFM

AIGC动态欢迎阅读

原标题:仅需200M参数,零样本性能超越有监督!谷歌发布时序预测基础模型TimesFM
关键字:时间,模型,序列,数据,研究人员
文章来源:新智元
内容字数:9781字

内容摘要:


新智元报道编辑:LRS
【新智元导读】TimesFM针对时序数据设计,输出序列长于输入序列,在1000亿时间点数据进行预训练后,仅用200M参数量就展现出超强零样本学习能力!时间序列预测在零售、金融、制造业、医疗保健和自然科学等各个领域无处不在:比如说在零售场景下中,「提高需求预测准确性」可以有显著降低库存成本并增加收入。
深度学习(DL)模型基本上垄断了「多变量时间序列预测」任务,在各个竞赛、现实应用中的表现都非常好。
与此同时,用于自然语言处理(NLP)任务的大型基础语言模型也取得了快速进展,大幅提升了翻译、检索增强生成、代码补全等任务的性能。
NLP模型的训练依赖于海量文本数据,其中数据来源多种多样,包括爬虫、开源代码等,训练后的模型能够识别语言中的模式,并具备零样本学习的能力:比如说把大模型用在检索任务时,模型可以回答有关当前事件的问题并对其进行总结。
尽管基于DL的预测器在很大程度上优于传统方法,并且在降低训练和推理成本方面取得了进展,但仍然面临着诸多难题:
大多数深度学习模型需要长时间的训练和验证周期,之后才能在新的时间序列上测试模型;相比之下,时间序列预测的基础模型可以


原文链接:仅需200M参数,零样本性能超越有监督!谷歌发布时序预测基础模型TimesFM

联系作者

文章来源:新智元
作者微信:AI_era
作者简介:智能+中国主平台,致力于推动中国从互联网+迈向智能+新纪元。重点关注人工智能、机器人等前沿领域发展,关注人机融合、人工智能和机器人革命对人类社会与文明进化的影响,领航中国新智能时代。

阅读原文
© 版权声明

相关文章

暂无评论

暂无评论...