CVPR 最佳学生论文,一键启动「BioCLIP 生物分类的层次预测 Demo」,帮你快速识别生物种类
AIGC动态欢迎阅读
原标题:CVPR 最佳学生论文,一键启动「BioCLIP 生物分类的层次预测 Demo」,帮你快速识别生物种类
关键字:生物,页面,教程,层次,论文
文章来源:HyperAI超神经
内容字数:0字
内容摘要:
作者:小贝
编辑:李宝珠
「BioCLlP: A Vision Foundation Model for the Tree of Life」 被评为 CVPR 2024 最佳学生论文,该论文项目可以对给定的生物图片按科、属、种等进行分类。很多生物由于外形的相似程度较高,难以使用肉眼进行区分。美国俄亥俄州立大学、微软研究院、加州大学欧文分校、伦斯勒理工学院共同发布了「BioCLlP: A Vision Foundation Model for the Tree of Life」, 基于 TREEOFLIFE-10M 这样的大规模标记数据集,经过严谨的测试,BioCLlP 在多个细粒度生物分类任务中展现出了显著的性能优势。该项目论文被评为CVPR 2024 最佳学生论文。HyperAI超神经官网现已上线了「BioCLIP 生物分类的层次预测 Demo」 教程,只需上传一张图片,即可快速识别出动物、植物的种类。教程地址:
https://go.hyper.ai/pX7LqDemo 运行1. 登录 hyper.ai,在「教程」页面,选择「BioCLIP 生物分类的层次预测 Demo」,点击「在
原文链接:CVPR 最佳学生论文,一键启动「BioCLIP 生物分类的层次预测 Demo」,帮你快速识别生物种类
联系作者
文章来源:HyperAI超神经
作者微信:HyperAI
作者简介:解构技术先进性与普适性,报道更前沿的 AIforScience 案例
© 版权声明
文章版权归作者所有,未经允许请勿转载。
相关文章
暂无评论...