AI百科
什么是领域适配(Domain Adaptation)
领域适配(Domain Adaptation)是迁移学习中的一种方法,旨在将一个模型从一个领域(源域)迁移到另一个不同的领域(目标域),提高模型在目标域的性能。主要...
什么是联邦学习(Federated Learning)
联邦学习(Federated Learning)是一种分布式机器学习技术,支持多个参与方在不共享原始数据的情况下共同训练模型。通过这种方式,各方可以在保护数据隐私和...
什么是嵌入式学习(Embedded Learning)
嵌入式学习(Embedded Learning)是一种创新的教育模式,将学习过程无缝地融入到日常工作和活动中。嵌入式学习认为,当学习内容与工作紧密相关时,员工的学习...
什么是人工智能伦理(AI Ethics)
人工智能伦理(AI Ethics)是研究人工智能技术发展和应用中所涉及的伦理问题和风险的学科。关注如何确保AI系统的设计、开发和部署符合道德标准,促进公平、透...
什么是自动化机器学习(Automated Machine Learning, AutoML)
自动化机器学习(Automated Machine Learning, AutoML)是一套工具和技术,自动执行机器学习工作流程中的某些任务,如数据预处理、特征工程、模型选择、超参...
什么是Q-learning
强化学习中的Q-learning是一种无模型的强化学习算法,通过学习一个动作价值函数Q(s, a)来找到最优策略。在给定状态下,Q(s, a)表示执行动作a的预期未来奖励总...
什么是神经风格迁移(Neural Style Transfer)
神经风格迁移(Neural Style Transfer)通过深度学习手段,将一幅图像的视觉风格应用到另一幅图像的内容上,创造出融合了两者特点的新图像。基于预训练的卷积...
什么是目标检测(Object Detection)
目标检测(Object Detection)是计算机视觉领域的一项关键技术,从图像或视频中识别并定位一个或多个目标物体。不仅需要判断图像中是否存在特定物体,还需确...
什么是语音识别(Speech Recognition)
语音识别(Speech Recognition)也称为自动语音识别(ASR),是一种将人类语音转换成文本或命令的高技术。通过特征提取、模式匹配和模型训练等步骤,使机器能...
什么是文本生成(Text Generation)
文本生成(Text Generation)是自然语言处理(NLP)领域的一项技术,使计算机能自动创建可读且语法正确的文本。将非语言信息(如数据或图像)转换为文本,或...
什么是对抗性攻击(Adversarial Attacks)
对抗性攻击(Adversarial Attacks)是一种安全威胁,攻击者通过在输入数据中故意添加难以察觉的扰动,诱使机器学习模型尤其是深度学习模型做出错误的预测或行...
什么是模糊逻辑(Fuzzy Logic)
模糊逻辑(Fuzzy Logic)是一种处理不确定性和模糊性的数学方法,模仿人类大脑的思维方式,支持逻辑值介于绝对的真(1)和假(0)之间。通过隶属度函数来表达...
什么是边缘计算(Edge Computing)
边缘计算(Edge Computing)是一种分布式计算架构,将数据处理和分析任务从中心化的数据中心转移到网络边缘,更接近数据源和用户的位置。可以显著减少数据传...
什么是深度学习框架(Deep Learning Frameworks)
深度学习框架(Deep Learning Frameworks)是一套软件库和工具的集合,用于设计、训练和部署深度学习模型。提供了构建复杂神经网络所需的基础设施,包括数据...
什么是探索与利用(Exploration vs. Exploitation)
探索与利用(Exploration vs. Exploitation)是两个核心概念。探索是指智能体尝试新的或不太熟悉的动作以发现更好的行为策略,利用是指智能体使用已知的最佳...